skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spaeth, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As one of the most complex systems known to science, modeling brain behavior and function is both fascinating and extremely difficult. Empirical data is increasingly available fromex vivohuman brain organoids and surgical samples, as well asin vivoanimal models, so the problem of modeling the behavior of large-scale neuronal systems is more relevant than ever. The statistical physics concept of a mean-field model offers a tractable way to bridge the gap between single-neuron and population-level descriptions of neuronal activity, by modeling the behavior of a single representative neuron and extending this to the population. However, existing neural mean-field methods typically either take the limit of small interaction sizes, or are applicable only to the specific neuron models for which they were derived. This paper derives a mean-field model by fitting a transfer function called Refractory SoftPlus, which is simple yet applicable to a broad variety of neuron types. The transfer function is fitted numerically to simulated spike time data, and is entirely agnostic to the underlying neuronal dynamics. The resulting mean-field model predicts the response of a network of randomly connected neurons to a time-varying external stimulus with a high degree of accuracy. Furthermore, it enables an accurate approximate bifurcation analysis as a function of the level of recurrent input. This model does not assume large presynaptic rates or small postsynaptic potential size, allowing mean-field models to be developed even for populations with large interaction terms. 
    more » « less
  2. Abstract Experimental neuroscience techniques are advancing rapidly, with major recent developments in high-density electrophysiology and targeted electrical stimulation. In combination with these techniques, cortical organoids derived from pluripotent stem cells show great promise asin vitromodels of brain development and function. Although sensory input is vital to neurodevelopmentin vivo, few studies have explored the effect of meaningful input toin vitroneural cultures over time. In this work, we demonstrate the first example of goal-directed learning in brain organoids. We developed a closed-loop electrophysiology framework to embody mouse cortical organoids into a simulated dynamical task (the inverted pendulum problem known as ‘Cartpole’) and evaluate learning through high-frequency training signals. Longitudinal experiments enabled by this framework illuminate how different methods of selecting training signals enable improvement on the tasks. We found that for most organoids, training signals chosen by artificial reinforcement learning yield better performance on the task than randomly chosen training signals or the absence of a training signal. This systematic approach to studying learning mechanismsin vitroopens new possibilities for therapeutic interventions and biological computation. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  3. Abstract How seizures begin at the level of microscopic neural circuits remains unknown. High-density CMOS microelectrode arrays provide a new avenue for investigating neuronal network activity, with unprecedented spatial and temporal resolution. We use high-density CMOS-based microelectrode arrays to probe the network activity of human hippocampal brain slices from six patients with mesial temporal lobe epilepsy in the presence of hyperactivity promoting media. Two slices from the dentate gyrus exhibited epileptiform activity in the presence of low magnesium media with kainic acid. Both slices displayed an electrophysiological phenotype consistent with a reciprocally connected circuit, suggesting a recurrent feedback loop is a key driver of epileptiform onset. Larger prospective studies are needed, but these findings have the potential to elucidate the network signals underlying the initiation of seizure behavior. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025
  4. SUMMARY Electrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the services and algorithms to serve as scalable and flexible building blocks within the pipeline. In this paper, we applied this pipeline on two types of cultures, cortical organoids andex vivobrain slice recordings to show that this pipeline simplifies the data analysis process and facilitates understanding neuronal activity. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025
  5. Free, publicly-accessible full text available November 15, 2025
  6. Abstract Neuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human and murine brain organoids andex vivoneonatal brain slices from the murine somatosensory cortex. We observed a balance between temporally rigid and flexible firing patterns that are emergent phenomena in human and murine brain organoids and early postnatal murine somatosensory cortex, but not in primary dissociated cortical cultures. Our findings suggest that temporal sequences do not arise in an experience-dependent manner, but are rather constrained by an innate preconfigured architecture established during neurogenesis. These findings highlight the potential for brain organoids to further explore how exogenous inputs can be used to refine neuronal circuits and enable new studies into the genetic mechanisms that govern assembly of functional circuitry during early human brain development. 
    more » « less